Czech Technical University in Prague, Klokner Institute

Reliability-based design of roofs exposed to a snow load

Milan Holicky and Miroslav Sykora Czech Technical University in Prague, Klokner Institute

Introduction **Design** alternatives **Reliability analysis** Concluding remarks

International Workshop on Reliability Engineering and Risk Management, August 21-23, 2008, Shanghai, China Czech Technical University in Prague, Klokner Institute

Management, August 21-23, 2008, Shanghai, China

Introduction

- Collapses of roofs during the winter 2005/2006 – is the reliability of roofs exposed to a snow load adequate?
- Major *causes of failures* extreme loads due to *snow*, insufficient *code provisions*, errors in design, execution and use
- Available *measurements* of snow loads newly evaluated and *standards revised* - the characteristic value as the 0.98 fractile of annual extremes and the partial factor 1.5
- The study focused on a critical analysis of present design procedures in Eurocodes using probabilistic methods

Czech Technical University in Prague, Klokner Institute

Design alternatives

• Design of a generic steel member exposed to permanent action and snow load according to the load combination (6.10) in EN 1990

• Alternatives

- Recommended *partial factors* (γ 's): $\gamma_{\rm M0} = 1.0; \ \gamma_G = 1.35; \ \gamma_O = 1.5$
- Recommended *sensitivity factors* (α 's) combination (6.10a,b):
 - $\gamma_{M0} = 1.14; \gamma_G = 1.35(1.15); \gamma_0 = 2.11(1.33)$
- Partial factor dependent on the *load ratio* $\chi = s_{sk}/(g_k + s_{sk})$: $\gamma_0 = \gamma_{\rm Sd}(1+\chi)$
- Reliability-based design partial factors derived from actual sensitivity factors obtained by FORM (data)

International Workshop on Reliability Engineering and Risk Management, August 21-23, 2008, Shanghai, China Czech Technical University in Prague, Klokner Institute

Probabilistic analysis

• Limit state function: $g(\mathbf{X}) = K_R R - K_E (G + \mu S_{50})$

Variable	Symb.	Distr.	Mean μ_X	$\operatorname{CoV} V_X$
Resistance	R	Lognormal	$R_k \exp(2V_R)$	0.08
Permanent load	G	Normal	$G_{ m k}$	0.10
Shape coefficient	μ	Normal	0.8	0.15
Snow load on the ground, 50-year max.	S_{50}	Gumbel	s _k	0.22
Resistance uncert.	K_R	Lognormal	1.15	0.05
Load effect uncert.	K_E	Lognormal	1.0	0.10

Czech Technical University in Prague, Klokner Institute

Conclusions

- The *constant partial factor* for snow load leads to a significantly *non-uniform reliability*.
- For steel roofs *reliability* of a structural member is insufficient.
- The partial factors should be determined on the basis of actual sensitivity factors.
- For steel roofs the *partial factor* for the snow load should be greater than 1.5.
- A more uniform reliability level may also be achieved using the *partial factor* for the snow load *dependent on the load* ratio.
- The results are dependent on the assumed models. Particularly models for the snow should be improved.

International Workshop on Reliability Engineering and Risk Management, August 21-23, 2008, Shanghai, China Czech Technical University in Prague, Klokner Institute

Milan Holicky, Miroslav Sykora

Reliability-based design of roofs exposed to a snow load

Management, August 21-23, 2008, Shanghai, China