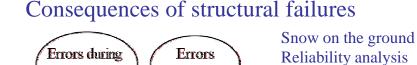
Czech Technical University in Prague, Klokner Institute

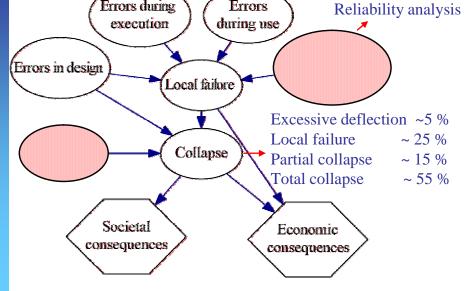
Failures of Roofs under Snow Load: Causes and Reliability Analysis Milan Holicky and Miroslav Sykora

<u>Milan Holicky</u> and Miroslav Sykora Czech Technical University in Prague, Klokner Institute

Introduction Causes Consequences Reliability analysis Concluding remarks

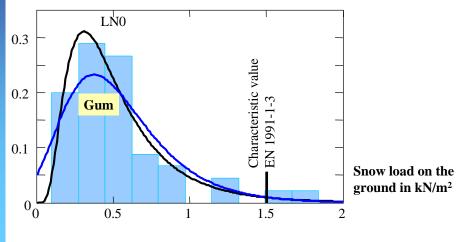

5th Congress on Forensic Engineering, 11-14 November 2009, Washington, DC Czech Technical University in Prague, Klokner Institute


Introduction


- *Number of collapses* of timber and steel roofs during the winter 2005/06 in Austria, Czech Republic, Germany and Poland
- Forensic assessments:
 - What were major *causes of failures*?
 - Were observed *snow* loads *exceptional*?
 - Is the *reliability* of structures designed according to standards *sufficient*?
- Presented overview of 249 investigations in the Czech Republic focused on *main causes*, *consequences* of failures and analysis of *code provisions*

Czech Technical University in Prague, Klokner Institute Causes of structural failures

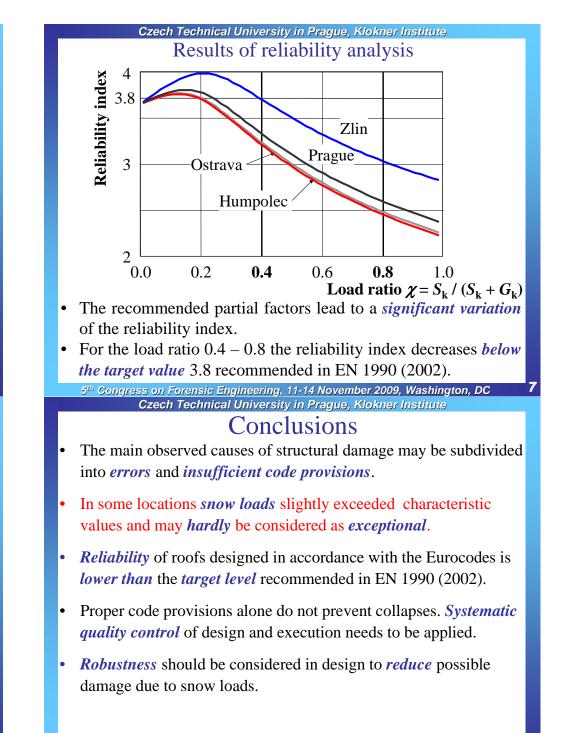
- *Errors in design* (inconsistencies with code provisions, incorrect loading widths, numerical errors) severe consequences
- *Errors during execution* (low-quality materials for timber structures, inappropriate details)
- *Errors during use* (incompetent interventions, installation of new facilities, insufficient maintenance) most frequent errors
- *Insufficient code provisions* (low reliability of light-weight roofs, underestimation of load effects, influence of high-quality heat insulation, combination of snow and ice) the most common cause
- In many cases *multiple causes* observed
- Errors in design and execution *not identified* due to inadequate *quality control*



Czech Technical University in Prague, Klokner Institute Probabilistic model for the snow load on the ground

- *Annual maxima* sample size 40-50 (no trends considered)
- *Coefficient of variation* about 0.7, *skewness* between 1.0 and 2.0

Relative frequency, probability density function



5th Congress on Forensic Engineering, 11-14 November 2009, Washington, DC Czech Technical University in Prague, Klokner Institute

Probabilistic reliability analysis

- Design of a *generic steel member* exposed to permanent and snow loads according to EN 1990 (2002)
- *Limit state function*: $g(\mathbf{X}) = K_R R K_E (G + \mu S_{50})$

Variable	Symb.	Distr.	Partial factor	Mean	CoV
Resistance	R	LN	1	$1,17R_{\rm k}$	0.08
Permanent load	G	Ν	1.35	$g_{ m k}$	0.10
Shape coefficient	μ	Ν	-	0.8	0.15
Snow on ground (50 years)	S ₅₀	Gum	1.5	s _k	0.22
Resistance uncertainties	K_R	LN	-	1.15	0.05
Load effect uncertainties	K_E	LN	-	1.0	0.10

