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Introduction 
Extreme flooding in the Czech Republic in August 2002 affected a number of localities. 
Emergency measures accepted during the flooding included protective barriers, immediate 
removing floating debris from bridges, additional anchors of ships on rivers and transport of 
persons from endangered areas. Despite these measures, damage to construction works was 
on an unprecedented scale. As indicated in Figure 1, particularly severe consequences were 
observed in the historic city of Prague where recorded water levels seemed to be 
exceptionally high. 
 
To reduce consequences of flooding in future, various precautions such as safety barriers and 
river management including construction of polders, modifications of depth, width and 
roughness of a river channel are considered. Decisions concerning these expensive measures 
should be preferably based on cost optimisation. However, such an analysis needs a 
theoretical model suitable for predicting discharges and extents of future flooding. 
 
In the presented study available hydrological data are evaluated to develop the required model 
for discharges of the Vltava River in Prague. The methods of moments and of maximum 
likelihood are applied to analyse the data and to answer frequent questions of civil engineers: 

    
Figure 1. The flooding in Prague and its consequences. 

Milan Holicky and Miroslav Sykora 1 



• Was the flooding really so exceptional and unpredictable? 
• What was the actual return period corresponding to the observed water level? 
• Does the measurement recorded in 2002 affect estimates of characteristic and design 

values of discharges? 
 
In addition to the statistical analysis of discharges findings of extensive investigations of 
failure causes are reviewed and recommendations for design and assessment of structures 
endangered by flooding are outlined. 
 
Statistical evaluation of annual maximum discharges 
Annual maximum discharges on the Vltava River in Prague measured by the Czech 
Hydrometeorological Institute since 1827 are further analysed. Sample characteristics are 
initially estimated by the classical method of moments described by Ang and Tang (1975) for 
which prior information on the type of an underlying distribution is not needed. 
 
Point estimates of the characteristics are given in Table 1 for the sample without and with the 
observation q2002. It appears that the sample mean, standard deviation and coefficient of 
variation are influenced by the discharge q2002 rather insignificantly (the enhancing factor 
varies in the range from 1.02 up to 1.07). However, the coefficient of skewness seems to be 
considerably affected by q2002 as the enhancing factor is 1.22. 
 
Probabilistic models 
The sample characteristics provided in Table 1 indicate that the annual maxima might be 
described by a two-parameter lognormal distribution having the lower bound at the origin 
(LN0) or a more general three-parameter shifted lognormal distribution having the lower 
bound different from zero. Other possible theoretical models are extreme value distributions: 
the type II called also the Fréchet distribution or type I, a popular Gumbel distribution with 
the constant skewness 1.14. 
 
Probability density functions of the considered theoretical models and a sample histogram are 
shown in Figure 2. It appears that the lognormal distribution LN0 describes well the data. 

Table 1. Sample characteristics of the annual maxima (sample size n = 165 or 166). 
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Figure 2. Histogram of the annual maxima and the selected probabilistic distributions. 

To compare goodness of fit of the considered distributions, Kolmogorov-Smirnov and chi-
square tests described by Ang and Tang (1975) are further applied. A hypothesis that a 
theoretical distribution fits well a sample distribution should be accepted under the condition 

Kr = K0 / Kp ≤ 1 ( 2
rχ  = 2

0χ  / 2
pχ  ≤ 1) (1) 

Otherwise the hypothesis should be rejected. In equation (1) K0 denotes a test value; Kp 
critical value and Kr relative test value of the Kolmogorov-Smirnov test. Analogous symbols 
are used for the chi-square test. 
 
Relative test values are listed in Table 2 for the sample without and with q2002. It can be seen 
that all the applied distributions meet the condition (1) in accordance with the Kolmogorov-
Smirnov test. However, the chi-square test indicates that the measured frequencies 
significantly differ from the theoretical values for all the considered distributions. It appears 
that the lognormal distribution LN0 is the most suitable model. Less favourable test results 
are observed for the three-parameter shifted lognormal and Fréchet distribution and the worst 
test results are obtained for the Gumbel distribution as the fixed skewness of 1.14 may be 
rather small. If the discharge q2002 is involved, the tests provide more favourable results for all 
the distributions, except for the Gumbel distribution. 

Table 2. Results of the Kolmogorov-Smirnov and chi-square tests. 
Without q2002 With q2002 Probabilistic distribution Kr 2

rχ  Kr 2
rχ  

Lognormal distribution LN0 0.53 1.11 0.49 1.01
Shifted lognormal distribution 0.73 1.26 0.65 1.16
Fréchet distribution 0.82 1.35 0.73 1.30
Gumbel distribution 0.85 1.43 0.86 1.63
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Table 3. Estimated parameters. 
Without q2002 With q2002  m s v w M s v w 

Method of moments 1200 790 0.66 2.3 1220 850 0.70 2.4 
Method of maximum likelihood 1210 870 0.72 2.5 1230 910 0.74 2.6 
 
Appropriate models should be selected on the basis of the statistical tests taking into account 
general experience with distributions of discharges at other localities. Experience of the Czech 
Hydrometeorological Institute indicates that the lognormal distribution LN0 might be a 
suitable model. Therefore, this distribution is considered in estimation of extreme discharges 
only. 
 
Parameter estimation 
The method of moments applied to estimate the sample characteristics is often assumed to be 
not very efficient. Assuming that the underlying distribution of the sample is the lognormal 
distribution LN0, the sample characteristics can be improved by the method of maximum 
likelihood, which is considered as the most efficient method for parameter estimation, 
particularly for large samples. The maximum-likelihood estimators m̂  and ŝ  of unknown 
mean μ and standard deviation σ of the distribution are obtained maximizing the logarithm of 
a likelihood function 

( )[ ] ( )smsm
sm

ˆ,ˆ,Llnmax
,

→q  (2) 

where q = (q1,…,qn) denotes the sample, m and s realization of the parameters μ and σ, 
respectively, and L(m,s|q) is the likelihood function 
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=

=
n

i
i smqsm

1

,f,L q  (3) 

where f(•) is the probability density function of the underlying distribution. Here the non-
linear conjugate-gradient method implemented in the software package Mathcad® is applied. 
 
Comparison of distribution parameters estimated by the method of moments and the method 
of maximum likelihood is provided in Table 3. It appears that the estimates of the mean are 
nearly independent of the applied method (differences about 1 %). However, the standard 
deviations estimated by the method of maximum likelihood are systematically greater than 
those obtained by the method of moments (differences about 10 %). The assumption of the 
lognormal distribution LN0 yields the theoretical skewness of about 2.4 while the sample 
skewness is 1.4 for the sample without q2002 and 1.7 for the sample with q2002. 
 
Estimation of extreme values 
Upper fractiles qp of the lognormal distribution LN0 are further estimated using the classical 
coverage method for a given confidence level γ as indicated e.g. in ISO 12491 (1997) 

P(qp,cov > qp) = γ (4) 

In accordance with EN 1990 (2002), the characteristic value qk is obtained as the 0.98 fractile 
of annual maxima while the design value qd is the fractile of the life-time maxima 
corresponding to the probability 

pd = 1 - Φ(αE × β) = 1 - Φ(-0.7 × 3.8) = 1 – 0.0039 (5) 
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where Φ denotes the cumulative distribution function of the standardised normal distribution, 
αE is the FORM sensitivity factor (approximated by the value -0.7 recommended for the 
leading action) and β is the reliability index equal to 3.8 for a 50-year reference period. 
Assuming statistical independence of the annual maxima, the design value is estimated as 
follows 

( )50
d

1
d F pq −=  (6) 

where F-1(•) denotes the inverse cumulative distribution function of the underlying 
distribution of the annual maxima. Partial safety factor γQ of discharges is consequently 
obtained as the ratio qd / qk. 
 
Estimated extreme discharges and partial factors are summarized in Table 4. It is indicated 
that: 

• The extreme values predicted from available data including the discharge q2002 are greater 
than those estimated without this discharge. The differences are by about 5-10 %. 

• The extreme discharges predicted by the method of maximum likelihood are greater than 
those obtained by the method of moments (by about 6-9 % for the characteristic value and 
12-19 % for the design value). 

• The upper fractiles estimated considering the commonly accepted 0.75 confidence level are 
greater than the expected upper fractiles (by about 6 % for the characteristic values and 
11 % for the design values). 

• The partial safety factor γQ ≈ 3.0 derived from the data seems to be significantly greater 
than the recommended value 1.5. 

 
Return period of the discharge recorded in 2002 
Expected return periods corresponding to the discharge q2002 are derived using the relationship 

T = 1 / [1 – F(q2002)] (7) 

where F(•) denotes the cumulative distribution function of the underlying distribution. 

Table 4. Estimated extreme discharges in m3/s and partial factors. 
Characteristic value Design value 

Without q2002 With q2002 Without q2002 With q2002  
Expect. γ = 

0.75 Expect. γ = 
0.75 Expect. γ = 

0.75 Expect. γ = 
0.75 

Partial 
factor 

γQ 

Method of 
moments 3400 3600 3600 3900 9600 10600 10700 11800 2.8 – 

3.1 
Method of 
maximum 
likelihood 

3700 4000 3800 4100 11400 12600 12000 13300 3.1 – 
3.3 

Table 5. Expected return periods in years. 
 Without q2002 With q2002
Method of moments 350 240 
Method of maximum likelihood 210 180 
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Apparently, the periods listed in Table 5 are considerably influenced by the fact whether the 
discharge q2002 is taken into account or not. The estimates based on the method of maximum 
likelihood are lower than those obtained using the method of moments. Considering the data 
without q2002, the observed discharge q2002 = 5250 m3/s corresponds to the exceptionally long 
return period 210 years for the method of maximum likelihood. Obviously this discharge 
could have been hardly expected. Note that estimates of a return period may enormously vary 
with a type of the applied distribution as shown by Holicky and Sykora (2004). 

Note that the presented study is based on available data only. A more detailed analysis should 
also consider non-statistical influences that may have evolved during the period covered by 
the measurements (since 1827). In particular discharges may be strongly dependent on a river 
management including construction of polders, modifications of depth, width and roughness 
of a river channel and removal of vegetation. Effects of deforestation and other man-made 
interventions in environment should also be taken into account. 
 
Causes of structural failures 
The main observed causes of structural damage due to the flooding may be subdivided into 
geotechnical and structural aspects. The geotechnical causes include: 

• Insufficient foundation (depth, width), 
• Underground transport of sediments and man-made ground (propagation of caverns), 
• Increased earth pressure due to elevated underground water. 

 
The major structural causes cover: 

• Insufficient structural robustness (no ring beams as indicated in Figure 3), 
• Use of inadequate construction materials (unfired masonry units as shown in Figure 4), 
• Material property changes caused by moisture (volume, strength). 

 
It has been observed that in particular lack of structural robustness might have led to failures 
disproportionate to original causes. Structural robustness may be improved by adequate: 

• System of horizontal and vertical ties, 
• Increased resistance of key members (a member essentially important for the structural 

robustness in the way that failure of this member implies a failure of a whole structure or 
significant parts of it), 

• Secondary protection of key members, 
• Invulnerable structural detailing. 

 
At present robustness is investigated by researchers from more than 20 European countries 
within the COST Action TU0601 Robustness of structures (www.cost-tu0601.ethz.ch). 
Preliminary findings are summarized by Faber et al. (2008). 
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Figure 3. Failure of a structure without ring beams. 

 
Figure 4. Failure of a structure with unfired masonry units. 
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Conclusions and recommendations for design and assessment of 
potentially flooded structures 
Presented statistical evaluation of annual discharge maxima indicates that: 

• Considering results of statistical tests and experience with distributions of discharges in 
other localities, a lognormal distribution with the lower bound at the origin is a suitable 
theoretical model for the analysed sample. 

• The characteristic and design values of discharges predicted using data including the 
discharge in 2002 are greater than those estimated without considering this discharge (in 
most cases by about 5 %). 

• Extreme discharges predicted by the method of maximum likelihood are greater than those 
by the method of moments (by about 10 %). 

• The recommended partial safety factor 1.5 is considerably lower than the value derived 
from the data (approximately 3.0 using the methods of moments and maximum likelihood). 

• The discharge observed in 2002 corresponds to an exceptionally long return period and, 
therefore, could have been hardly expected. 

 
It follows from investigation of structural failures due to the flooding that: 

• The main observed causes of structural damage may be subdivided into geotechnical and 
structural aspects. 

• Lack of structural robustness might have led to failures of flooded structures 
disproportionate to original causes. 

 
Based on the above conclusions, the following recommendations for design and assessment of 
structures potentially endangered by flooding are provided: 

• Prior to decisions concerning safety of flooded structures, available data on discharges 
should be carefully analysed since extreme discharges predicted from measurements may 
considerably differ from those provided in standards. 

• Robustness aspects should be considered in design to reduce possible damage due to 
flooding. Sufficient robustness may be achieved by an adequate system of ties, increased 
resistance of key members, secondary protection of key members and by invulnerable 
structural detailing. 
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